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S T E A D Y  C O O L I N G  E F F E C T  O F  AN A N I S O T R O P I C  
THERMOELECTRIC REFRIGERATOR 

V. G. Okhrem and E. A. Okhrem UDC 621.382.53 

The theolw of  cooling of an anisotropic thermoelect14c refi4gerator (ATR) is given on the assumption 
that the temperature is two-dimensional along the longitudinal section. 

A one-dimensional stationary model of  ATR cooling (the temperature is one-dimensional over the cross 
section of the ATR specimen) was used as early as in [1] for calculating the operating characteristics of ther- 
moelectric devices of transverse type. It was also used in [2]. A one-dimensional model mainly adequately 
describes the essence of the thermal processes that occur in an ATR; however, it gives no way of taking into 
account the heat transfer of  the end and lateral faces with the surroundings. A two-dimensional model for 
studying the influence of the heat transfer of the lateral faces with the surroundings on the cooling effect is 
described in [3], where it is shown that, for an infinitely long specimen, the temperature distribution over the 
cross section of the refrigerator in the general case is two-dimensional. Two-dimensionality can be disregarded 
on condition that the aspect ratio of  the specimen is much smaller than n / 4  and, if the lateral faces are adi- 
abatically insulated from the surroundings, also at c% = 0 for any aspect ratio. It should be noted that the 
model proposed in [3] neglects the heat transfer of the ATR ends with the surroundings. 

At the same time, it is clear that thermal contact of  the ends with the surroundings leads to a heat 
inflow into the specimen and, correspondingly, to a weakening of the cooling effect. 

Thermal conditions can be selected differently. However, we think that isothermal contact is the closest 
to the actual experimental situation. 

Indeed, the input leads to the specimen are made of a metal with a high electrical conductivity (for 
example, copper). The cross section of the input leads is chosen the same as that of  the specimen - this facili- 
tates the generation of a one-dimensional electric current in the specimen that is close to a direct one. The high 
electrical conductivity of the metal of  the input leads also implies its high thermal conductivity; therefore the 
experimental situation is similar to that presented in Fig. 1. 

Let us find a stationary temperature distribution in the ATR specimen, assuming that the material of 
which it is made is thermoelectrically anisotropic, i.e., anisotropic only with respect to thermal emf, and the 
kinetic coefficients are independent of  the temperature and coordinates. On condition that the temperature is a 
function of x and y (see the figure) and the current traverses the specimen along the axis, a stationary tempera- 
ture distribution is found from the generalized heat-conduction equation 

32T c~2T 
- - + y = 0  

ax 2 + av 2 

(1) 

In the general case, the temperature must also be a function of the coordinate z. However, given that 
0% = 0 (i.e., the crystallographic axis coincides with the z axis) and the lateral faces of the specimen are 
adiabatically insulated from the surroundings, this relation can be disregarded [3]. 

The boundary conditions 
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Fig. 1. Longitudinal section of the ATR by the .rOy plane: 1) ATR speci- 
men; 2) input leads to the specimen; 3) spacer made of dielectric with a 
high thermal conductivity, for example, beryllium ceramics; 4) thermostat. 

T (0, y) = T (l, y) = T (x, 0) = T 0 , (2) 

3T (x, h) aT (x, h) = 0 (3) 

imply the following: (2) isothermal contact of specimen 1 (see the figure) with thermostat 4 at the temperature 
T0 of its bottom face (y = 0) and ends (x = 0, x = 1) and (3) adiabatic insulation of the top face. It should be 
noted that isothermal contact of the bottom face of the specimen with a thermostat provides the removal of a 
part of the released Joule heat (the other part is balanced out by the transverse Peltier effect) and, if any, of  
the heats of  a different nature - this is the principle of operation of an ATR. As for the thermostatic control 
of the end faces, it can only weaken the cooling effect. 

Let the solution of Eq. (1) be represented as 

T(x'y)=T°--2 Ty- 2 l+a-----~ y l+ahY+ y , f , , ( x )  sin y . 
tr=- I 

(4) 

Expression (4) satisfies the condition T(x, 0) = T0, and the condition of adiabatic insulation (3) leads to 
the transcendental equation 

1 (5) tan ~,, = ~ ~,,, 

whose solutions are known [4]. 
Equation (1) and expression (4) yield 

f,,(x)=A,~expl~x)+B,,expl-~x I, 

where A, and B, are constants, which are determined with the aid of  boundary conditions (2): 

(6) 

A l l  

1 yh 2 + all Dn 
- -~ "fC,, + 2 1  + ah F 

L 
1 

2 sinh ( ~ )  
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where 

B I? m 

1 7h 2 + all 
- ~ 3'C,, + 2 1 + ah 

2 sinh( h ) 

2 
C , , = ~ I y - s i n  y dy ,  O , , = ~ I y s i n  y dy 

0 (} 

are the factors of the Fourier expansion in terms of sines of y2 and y, respectively. 
Simple calculations lead to the following expressions for Dn and C,,: 

2hi_  sin ~,,'~ 2h2 ~ 2 1 ] 
O,,=~-,, c ° s ¢ " + - - ~ n  J ' C"= " - r - - ' - c ° s ¢ " + - - s i n ~ n + - - ( c ° s ~ " - l )  " ¢ , , k  {,, ¢,, 

On substituting An and Bn into expressions (6) and (4), we obtain the expression for the temperature 
distribution in the ATR specimen: 

1 
T (x, y) = T o - --g "gv 2 + 

~t h 2 + ah aT o 
2 l + a h  y l + a h  y -  

1 (~_2+  all a-T° )D,, 

_ ~ - - ~ C , +  l+al----~z l + a h )  ( .~ _x) /  sinh(_~ / ]s in(~2y ) {~: l'~ sinh (/ + x • 

,,=l sinh( h ) 

AS is seen from the resulting expression, the temperature distribution along the longitudinal section of 
the ATR specimen is two-dimensional. To evaluate the cooling effect numerically, we select points that are 
equidistant from the specimen ends, ~.e., set x = 1/2. (It should be noted that the point (1/2, h) is selected in 
experimental investigations.) Then, the /-dependent factor under the summation sign is simple in form: cosh -1 
(~,,I/2h). On condition that 1 --~ ~, the temperature in the middle of the specimen is a function of only y, and 
at the point y = h it is as follows: 

T(h) - 
TO + 2 P (jh)2 (7) 

K 

1 + o~12jh 

Hence, the optimum current density is 

"(1 + 2 Z T  o - 1 ( 8 )  

Jopt - R 12 h ~: " 

Substituting Eq. (8) into Eq. (7) yields the expression for the minimum temperature: 

-,/l + 2 z : %  - 1 
Zmin = Z (9) 

It is valid for any Z. For small Z, when 2ZTo << 1, we obtain [1] 
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An expression for the temperature at the point (l/2, h) is of  the form 

T (1/2, h) = T (h) - Z 
t1= | 

- ~ "~C,~ + 1 + ah 1 + ah D .  

c°sh/ - / 
sin ~,,. 

The sum in the last expression is always negative. Therefore, the larger in magnitude it is, the weaker the 
cooling effect. Its magnitude depends on the characteristics of the material of  the ATR specimen, the current 
density, and the dimensions l and h. Let the current of the density Jopt traverse the specimen lengthwise; then, 
at T0 = 300 K, Z = 10 -3 K -1, and ah = 0.3 and, according to [4], ~1 = 1.40 and ~2 = 4.65, for which at h = 
0.5 cm and I = 2.5 cm, cosh (~2l/2h) -- 16 and cosh (~21/2h) = 6.104. Therefore, the sum can be neglected in 
comparison with T(h) = Tmin = 265 K. Thus, in this case, at l / h - 5  the heat inflow inside the specimen 
through the ends does not affect the cooling effect. At other parameters of  the specimen material and another 
magnitude of the current, the aspect ratio is different, specifically, the smaller the Z, the larger the aspect ratio 
that should be chosen. The experimental value of l/h was 4.9 in [5] and 5 in [6], which is in agreement with 
theoretical values. 

N O T A T I O N  

x, y, z, axes of laboratory system of coordinates; T, temperature; To, temperature of thermostat; p and 
~;, specific resistance and thermal conductivity; j, current density; h and 1, height and length of specimen; ~12, 

' 3  

~3~, components of tensor of thermal emf; Z = ~T2(~p), anisotropic thermoelectric factor of merit; n = 1, 2, 3, 

.... index of summation; Jopt, optimum current density; Tmin,  minimum temperature; a = al~/~: ,  7 = P.]2/~c; ~,, 
roots of transcendental equation (5). 
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